REPRESENTATIONS OF ANISOTROPIC UNITARY GROUPS

DONALD G. JAMES

ABSTRACT. Let SU(f) be the special unitary group of an anisotropic hermitian form f over a field k. Assume f represents only one norm class in k. The representations $\alpha \colon SU(f) \to SL(n,R)$ are characterized when R is a commutative ring with 2 not a zero divisor and $n = \dim f \geq 3$ with $n \neq 4,6$. In particular, a partial classification of the normal subgroups of SU(f) is given when k is the function field $\mathbf{C}(X)$.

1. Introduction. We study representations $\alpha: U(f) \to GL(n,R)$ where U(f)is the unitary or orthogonal group of an anisotropic form f over a field k with $\dim f = n \geq 3$ and R is a commutative ring with 2 not a zero divisor. Representations of the special unitary group SU(f) will also be considered and, in particular, a partial classification of the normal subgroups of SU(f) is obtained. However, the method only applies to a restricted class of fields k, including all real closed fields. The results are first established for R a local ring using a generalization of the fundamental theorem of projective geometry to construct a generalized place $\varphi \colon k \to R \cup \infty$ with the inverse image $A = \varphi^{-1}(R)$ a valuation ring of k. The kernel of the homomorphism $\varphi \colon A \to R$ is now an ideal \mathfrak{a} of A which need not be maximal. The kernel of the homomorphism α is a twisted congruence subgroup $U(\mathfrak{a},\chi)$ of U(f) defined with respect to \mathfrak{a} and a character $\chi\colon U(f)\to\mathfrak{u}(R)$, where $\mathfrak{u}(R)$ denotes the units of R. For general commutative rings R, the kernel of α is the intersection of the local kernels obtained after α is extended by localizing at the maximal ideals of R. These results generalize earlier work of Weisfeiler [16] and James [9, 10] where R is a field. Earlier, Borel and Tits [3] had studied abstract homomorphisms of isotropic algebraic groups and Tits [15] had considered representations of Lie groups. See [8] for a general survey of this area.

Let k be a field of characteristic not two with involution *, V a k-space of finite dimension $n \geq 3$ and $f \colon V \times V \to k$ an anisotropic hermitian form. Thus f(x,x) = 0 implies x = 0. Let U(f) be the unitary group of f and f(f) the subgroup of f(f) generated by involutions. We allow the involution * on f(f) to be trivial, in which case f becomes a quadratic form and f(f) = f(f) is an orthogonal group. The symmetry $f(f) \colon y \mapsto y - 2f(x,y)f(x,x)^{-1}x$ is an involution in f(f) for each nonzero f(f) in f(f) are conjugate under $f(f) \colon f(f) \cap f(f)$. By Witt's Theorem this means that $f(f) \colon f(f) \colon$

Received by the editors March 3, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 20G05, 51A10; Secondary 11E57.

This research was partially suported by the National Science Foundation.

pythagorean and formally real (see Lam [12]); this includes all real closed fields, as well as fields of Laurent series in several variables over \mathbf{R} or any other real closed field. When f is hermitian there are more possibilities. Now we can choose k = K(a), with K formally real pythagorean and $a \notin K$ with $a^2 \in K$, or K any formally real field with pythagoras number two and $a^2 = -1$. In particular, our results now apply to the function field $\mathbf{C}(X)$ and this case will be considered in greater detail. Some of our results will also hold when f is an hermitian form over a quaternion division algebra of special type (see [10, p. 348]).

It is shown in [10, Proposition 3.1] that U(f) is generated by I(f) and any one-dimensional subgroup U(1) of U(f). Since SI(f) is generated by products of two symmetries $\Psi(x)\Psi(y)$ where $\Psi(x)$ and $\Psi(y)$ are conjugate, it follows that SI(f) is contained in the commutator subgroup [U(f),U(f)]. If U(1) is the one-dimensional subgroup on the subspace kx of V then $\Psi(x) \in U(1)$. Hence the map $\det: U(f) \to k^*$ has kernel SI(f). Thus SI(f) = SU(f) is the commutator subgroup of U(f) and

$$1 \to SU(f) \to U(f) \xrightarrow{\det} N_1(k) \to 1$$

is an exact sequence, where $N_1(k) = \{a \in k | a^*a = 1\}$ is the norm one subgroup of k^* . It is also easily seen that SU(f) is perfect.

Our main result is the following.

THEOREM 1. Let f be an anisotropic hermitian form which represents only one norm class and let G be a subgroup of U(f) containing SU(f). Let $\alpha\colon G\to GL(M)$ be a representation of G where M is a free module over a commutative local ring R with 2 a unit and $\alpha SU(f)\neq 1$. Assume $\dim f=\operatorname{rank} M=n\geq 3$ and $n\neq 4,6$. Then there exist

- (i) a generalized place $\varphi \colon k \to R \cup \infty$ with $A = \varphi^{-1}(R) = A^*$ a valuation ring and $\varphi \colon A \to R$ a homomorphism with kernel \mathfrak{a} ,
 - (ii) a free maximal A-lattice N in V of rank n with U(N) = U(f),
 - (iii) a φ -semilinear map $\beta \colon N \to M$ with kernel $\mathfrak{a}N$,
 - (iv) a character $\chi \colon G \to \mathfrak{u}(R)$,
- (v) a twisted congruence subgroup $G(\mathfrak{a},\chi)$ of G, such that

$$1 \to G(\mathfrak{a}, \chi) \to G \xrightarrow{\alpha} GL(M)$$

is an exact sequence. Moreover, for each $\sigma \in G$ and $x \in N$, $(\alpha \sigma)\beta(x) = \chi(\sigma)\beta\sigma(x)$. In particular, when G = SU(f), the diagram

$$\begin{array}{ccc}
N & \xrightarrow{\sigma} & N \\
\beta \downarrow & & \beta \downarrow \\
M & \xrightarrow{\alpha\sigma} & M
\end{array}$$

is commutative.

The theorem is false when n=4 and G=SU(f), see Artin [1, Theorem 5.23] since there are now nontrivial homomorphisms $\alpha \colon SO(f) \to SL(3,k)$ with kernel not a congruence subgroup. Probably the theorem is true when n=6, but there are some technical difficulties at one point in our method of proof. However, if we

modify the assumptions on G to $I(f) \subseteq G$ and $\operatorname{card} \alpha I(f) > 2$, then the theorem remains true for both n = 4 and 6.

Theorem 1 can be used, with the help of a localization argument, to give the following partial classification of the normal subgroups of SU(f) in terms of congruence subgroups.

THEOREM 2. Let f be an anisotropic hermitian form which represents only one norm class. Assume dim $f = n \geq 3$ and $n \neq 4,6$. Let H be a nontrivial normal subgroup of SU(f) such that SU(f)/H is contained in GL(n,R) for some commutative ring R with 2 not a zero divisor. Then H is the intersection of a family of congruence subgroups of the type $SU(\mathfrak{a},1)$ in Theorem 1.

Special cases of Theorem 2 are known for orthogonal groups without the restriction $SO(f)/H \subseteq GL(n,R)$. When $k=\mathbf{R}$ the projective group PSO(f) is simple, $n \neq 4$ (see [1]). Pollak [14] considered the field $k=\mathbf{R}((X))$ of formal Laurent series and Chang [5] generalized this to several variables. Archimedean ordered pythagorean fields are considered by Bröcker [4]. Probably their results can also be modified to unitary groups.

For specific fields k the results in Theorems 1 and 2 can be strengthened. In particular, if \mathbf{R} is contained in the fixed field of k, then the valuation on \mathbf{R} induced by the restricted place is trivial (Proposition 8).

We will consider unitary groups over the rational function field $k = \mathbf{C}(X)$, with involution induced by $i^* = -i$, in detail. For each complex number c the identity map $\varphi_c \colon \mathbf{C} \to \mathbf{C}$ extends to a unique place $\varphi_c \colon k \to \mathbf{C} \cup \infty$ by setting $\varphi_c(X) = c$. The associated valuation ring A_c is the set of rational functions r(X) = g(X)/h(X) over \mathbf{C} with g(X), h(X) relatively prime polynomials in $\mathbf{C}[X]$ and $h(c) \neq 0$. Fix an integer $m \geq 1$ and let R(c,m) denote the local ring $\mathbf{C}[X]/(X-c)^m$. Then a generalized place $\varphi_{c,m} \colon k \to R(c,m) \cup \infty$ can be obtained as follows. If $r(X) \notin A_c$ set $\varphi_{c,m}(r(X)) = \infty$. Any $r(X) \in A_c$ can be expanded as a unique formal power series $r(X) = \sum_{j=0}^{\infty} a_j(X-c)^j$ with $a_j \in \mathbf{C}$. Set $\varphi_{c,m}(r(X)) = \sum_{j=0}^{m-1} a_j(X-c)^j$, viewed as an element in R(c,m). The kernel of $\varphi_{c,m} \colon A_c \to R(c,m)$ is the ideal $(X-c)^m A_c$. Another place φ_∞ on the field $\mathbf{C}(X)$ can be obtained by setting $\varphi_\infty(X) = \infty$; the associated valuation ring A_∞ consists of all rational functions r(X) with $\deg(r(X)) \leq 0$. For each integer $m \geq 1$ there corresponds a generalized place $\varphi_{\infty,m}$. The kernel of the restriction of $\varphi_{\infty,m}$ to A_∞ consists of all rational functions r(X) with $\deg(r(X)) \leq -m$.

Now let A be the intersection of a finite number of the valuation rings of $\mathbf{C}(X)$ just considered with $\varphi(X)$ real or infinite. Then A is a semilocal ring which can be described as follows. Choose a finite number of real numbers c_1, \ldots, c_l (possibly none) and also possibly choose ∞ . Then A consists of all rational functions r(X) = g(X)/h(X) with $h(c_i) \neq 0$, $1 \leq i \leq l$, and also $\deg(r(X)) \leq 0$ if ∞ is chosen. Let V be a vector space over $\mathbf{C}(X)$ with basis $u_1, \ldots, u_n, n \geq 3$, and let f be the anisotropic hermitian form defined by $f(u_i, u_j) = \delta_{ij}$, $1 \leq i, j \leq n$. Then $N = Au_1 \perp \cdots \perp Au_n$ is a maximal lattice in V consisting of all $x \in V$ with $f(x,x) \in A$ (if any c_i is nonreal, N is not maximal). Hence U(N) = U(f) where U(N) consists of all $\sigma \in U(f)$ with $\sigma(N) = N$. Let \mathfrak{a} be an ideal of the principal ideal ring A and define $SU(\mathfrak{a})$ as the congruence subgroup of SU(f) consisting of

all $\sigma \in SU(f)$ for which $(\sigma - 1_V)(N) \subseteq \mathfrak{a}N$. Then we have an exact sequence

$$1 \to SU(\mathfrak{a}) \to SU(f) \to SL(n,R)$$

where R is the commutative ring A/\mathfrak{a} . The ideal \mathfrak{a} is generated by a rational function r(X) of the form

$$r(X) = (X - c_1)^{m_1} \cdots (X - c_l)^{m_l} / (X - c)^{m + m_1 + \cdots + m_l}$$

with c_1, \ldots, c_l, c all real and distinct; this gives the connection with the generalized places.

THEOREM 3. Let H be a nontrivial normal subgroup of the special unitary group SU(f) over the field $\mathbf{C}(X)$. Assume $n=\dim f\geq 3,\ n\neq 4,6,\ and\ SU(f)/H\subseteq GL(n,R)$ for some commutative ring R with 2 not a zero divisor. Then H is a congruence subgroup $SU(\mathfrak{a})$.

The above three theorems are a further contribution to the solutions of very general questions asked by Weisfeiler [11, XVII and 17, §7], although we have gone beyond his original framework in allowing the image group to be defined over a ring.

2. Collineations and projective geometry. Let R be a local ring with maximal ideal $\mathfrak{m}=\mathfrak{m}(R)$. In this section it is not necessary to assume that R is commutative or that 2 is a unit. Let M be a free R-module of finite rank $n \geq 3$. A point of M is a rank one direct summand of M and a line is a rank two direct summand of M. The projective space PM of M is the set of all points of M. A projective frame of PM is a set of n points P_1, \ldots, P_n such that $M = P_1 + P_2 + \cdots + P_n$. A special case of the above situation is a vector space V over a (skew) field k with associated projective space PV.

DEFINITION. A collineation (or projective homomorphism) is a map $\pi \colon \mathbf{P}V \to \mathbf{P}M$ sending points of $\mathbf{P}V$ to points of $\mathbf{P}M$ such that

- (i) there exists a projective frame of $\mathbf{P}V$ which is carried by π to a projective frame of $\mathbf{P}M$ (and hence $\dim V = \operatorname{rank} M$),
- (ii) if the images of the points P_1 and P_2 of $\mathbf{P}V$ generate a line $\pi P_1 + \pi P_2$ in $\mathbf{P}M$, then any point P on the line $P_1 + P_2$ has image πP on the line $\pi P_1 + \pi P_2$.

If, moreover, in (ii) above, there always exists a point P_3 on the line $P_1 + P_2$ such that $\pi P_1 + \pi P_2 = \pi P_1 + \pi P_3 = \pi P_2 + \pi P_3$, then the collineation π is called *thick*.

If P_1 and P_2 are distinct points in $\mathbf{P}V$ then $P_1 + P_2$ is always a line. However, this is false in $\mathbf{P}M$ since the span of the points need not be a direct summand of M. This is the reason for the more careful phrasing in the definition of a collineation.

Fundamental Theorem. Let $\pi\colon \mathbf{P}V\to \mathbf{P}M$ be a thick collineation. Then there exist

- (i) a generalized place $\varphi \colon k \to R \cup \infty$ with $A = \varphi^{-1}(R)$ a valuation ring of k and the restriction $\varphi \colon A \to R$ a ring homomorphism,
 - (ii) a free A-module N in V with rank $N = \dim V$,
- (iii) a φ -semilinear map $\beta \colon N \to M$, such that β induces π , namely, $\pi P = R\beta(P \cap N)$ for $P \in PV$.

PROOF. Choose a basis u_1, \ldots, u_n in V such that $\pi(ku_i) = Rv_i$, $1 \le i \le n$, is a projective frame for PM. Thus $M = Rv_1 + \cdots + Rv_n$. Fix j with $2 \le j \le n$.

Since Rv_1 and Rv_j span a line, it follows from the definition of a thick collineation that there exists a point $P_3 = k(u_1 + au_j)$ in PV, $a \neq 0$, with image $R(bv_1 + cv_j)$ satisfying

$$Rv_1 + Rv_j = Rv_1 + R(bv_1 + cv_j) = Rv_j + R(bv_1 + cv_j).$$

Hence b is a unit in R and we may assume b=1. Also c is a unit in R. Replacing u_j by $a^{-1}u_j$ and v_j by $c^{-1}v_j$ we can normalize our choice of basis v_1, \ldots, v_n for M such that

$$\pi(k(u_1 + u_j)) = R(v_1 + v_j), \qquad 2 \le j \le n.$$

For each $a \in k$ the point $k(u_1 + au_j)$, $j \neq 1$, lies on the line $ku_1 + ku_j$ and hence its image is either $R(v_1 + bv_j)$ for some $b \in R$, or $R(pv_1 + v_j)$ for some $p \in \mathfrak{m}$. In the first case set $\varphi_j(a) = b$ and in the second case set $\varphi_j(a) = \infty$. Then for each $j \neq 1$ we have defined a map $\varphi_j \colon k \to R \cup \infty$ with $\varphi_j(0) = 0$ and $\varphi_j(1) = 1$. Let $A_j = \varphi_j^{-1}(R)$. We now prove that $\varphi_j = \varphi$ and $A_j = A$ are independent of j, that A is a valuation ring of k and $\varphi \colon A \to R$ is a ring homomorphism.

Fix $1 < i \neq j \leq n$ and let $a \in A_i$ and $b \in A_j$. Then by standard arguments it follows that the images of the points $k(u_1 + au_i + bu_j)$ and $k(au_i + u_j)$ are respectively, $R(v_1 + \varphi_i(a)v_i + \varphi_j(b)v_j)$ and $R(\varphi_i(a)v_i + v_j)$. Hence, for nonzero a, a' in A_i , the image of the point $k(u_1 + (a + a')u_i + u_j)$ lies on both of the lines $R(v_1 + \varphi_i(a)v_i) + R(\varphi_i(a')v_i + v_j)$ and $R(v_1 + \varphi_i(a)v_i + v_j) + Rv_i$. If $\varphi_i(a + a') = \infty$ then this image also lies on the line $R(pv_1 + v_i) + Rv_j$ where $p \in \mathfrak{m}$, which leads to a contradiction. Thus $\varphi_i(a + a') \neq \infty$ and A_i is closed under addition. It now easily follows that $\varphi_i(a + a') = \varphi_i(a) + \varphi_i(a')$.

Again take nonzero $a \in A_j$, $b \in A_i$. Since the images of ku_1 and $k(bu_i + u_j)$ span a line in PM, as do the images of $k(u_1 + au_j)$ and ku_i , it follows that the image of $k(u_1 + abu_i + au_j)$ is $R(v_1 + \varphi_j(a)\varphi_i(b)v_i + \varphi_j(a)v_j)$. Hence the image of $k(u_1 + abu_i)$ cannot be $R(pv_1 + v_i)$ and so necessarily $ab \in A_i$. Letting b = 1 it follows that $A_j \subseteq A_i$ and hence $A_i = A_j = A$ is closed under multiplication. Moreover, $\varphi_i(ab) = \varphi_j(a)\varphi_i(b)$ so that $\varphi_i = \varphi_j = \varphi$ and $\varphi(ab) = \varphi(a)\varphi(b)$. Note we still have not shown that A is a ring, namely $-1 \in A$.

Next consider $a \notin A$. Then $\pi(k(u_1 + au_2)) = R(pv_1 + v_2)$ where $p \in \mathfrak{m}$. Repeat all the previous arguments with u_1 and u_2 interchanged; there is no need to change the normalization of the basis, however, since it is already established that

$$\pi(k(u_2 + u_i)) = R(v_2 + v_i)$$
 for $i \neq 2$.

We obtain a new set $B \subseteq k$, closed under addition and multiplication, and a map $\psi \colon B \to R$. For $c \in A$ the image of $k(u_1 + u_2 + cu_3)$ is $R(v_1 + v_2 + \varphi(c)v_3)$. If $c \notin B$, then $k(u_2 + cu_3)$ has image $R(pv_2 + v_3)$ where $p \in \mathfrak{m}$ and consequently the image of $k(u_1 + u_2 + cu_3)$ must be contained on the line $Rv_1 + R(pv_2 + v_3)$, which is a contradiction. Hence A = B and $\varphi = \psi$. Again consider $a \notin A$. If $a^{-1} \notin A$, then $k(u_1 + au_2) = k(a^{-1}u_1 + u_2)$ forces $Rv_2 \equiv Rv_1 \mod \mathfrak{m}$. Thus necessarily $a^{-1} \in A$; in particular $-1 = (-1)^{-1} \in A$. Hence A is a valuation ring and $\varphi \colon A \to R$ is a ring homomorphism.

Finally, define $N = Au_1 + \cdots + Au_n$, a free A-module of rank n. Define $\beta \colon N \to M$ by $\beta(\sum a_i u_i) = \sum \varphi(a_i) v_i$. Then β is a φ -semilinear map. Let $x = \sum c_i u_i \in V$ with $c_i \in k$ not all zero. Since A is a valuation ring, there is a j with $c_i^{-1}c_i \in A$ for

all i. By standard arguments

$$\pi(kx) = R\left(\sum \varphi(c_j^{-1}c_i)v_i\right) = R\beta(kx\cap N)$$

completing the proof.

REMARK. Clearly N is not unique since it depends on the choice of the projective frames at the beginning of the proof. However, if k and R are commutative, a standard argument shows that the generalized place φ and its valuation ring A are unique; in general they are only determined up to conjugacy. Also, N and β are determined up to multiplication by a nonzero element of k and a unit of R, respectively. Note also that if $\varphi(a) = \infty$ then $\varphi(a^{-1}) \in \mathfrak{m}(R)$.

3. Involutions. Many of the results in this section are extensions of the work of Dieudonné [6, 7]. Let R be a local ring with 2 a unit, but not necessarily commutative, and M a free R-module of finite rank $m \geq 3$. Let σ be an involution in the general linear group GL(M) = GL(m,R) and $P(\sigma) = \{x \in M | \sigma(x) = x\}$ and $N(\sigma) = \{x \in M | \sigma(x) = -x\}$ the positive and negative spaces of σ . Then $P(\sigma) \cap N(\sigma) = 0$ and $M = P(\sigma) + N(\sigma)$ is a direct sum so that both $P(\sigma)$ and $N(\sigma)$ are free modules. The involution σ is called extremal, or a 1-involution, if either $P(\sigma)$ or $N(\sigma)$ has rank one. In general, σ is an l-involution if either $P(\sigma)$ or $N(\sigma)$ has rank $l(\leq \frac{1}{2}m)$. Any set of mutually commuting involutions in GL(M) contains at most 2^m elements and such a set can always be extended to a set of 2^m mutually commuting involutions in GL(M) (see McDonald [13]). When R is commutative, a set of mutually commuting involutions in the special linear group SL(M) can always be extended to a maximal set of 2^{m-1} involutions. All of the above holds for involutions in the unitary group U(f) of an anisotropic hermitian form f, although now we also have $V = P(\sigma) \perp N(\sigma)$ is an orthogonal sum.

PROPOSITION 1. Let f be an anisotropic hermitian form which represents only one norm class. Assume $n = \dim V$ is odd. Let $\alpha \colon SU(f) \to SL(m,R)$ be a nontrivial representation where $n \ge m \ge 3$ and R is a commutative local ring with 2 a unit. Then n = m and α preserves l-involutions for $1 \le l < \frac{1}{2}n$.

PROOF. Observe first, since n is odd, that $-1_V \notin SU(f)$ and all extremal involutions in SU(f) are of the form $-\Psi(x)$. Then $\alpha(-\Psi(x)) \neq 1_M$, for otherwise α is trivial. In fact, since any involution σ in SU(f) is a product of mutually commuting extremal involutions, it is easily seen that $\alpha(\sigma) \neq 1_M$ provided $\sigma \neq 1_M$. Any involution in SU(f) can be embedded into a maximal set S of 2^{n-1} mutually commuting involutions. Since card $\alpha(S) = \operatorname{card} S = 2^{n-1}$, the image $\alpha(S)$ forms a set of 2^{n-1} mutually commuting involutions in SL(m,R). Since $n \geq m$, this set is maximal and n = m. If m = 3 then α necessarily preserves extremal involutions. Hence we may assume $n \geq 5$. In S there are exactly n extremal involutions all conjugate under SU(f). Any l-involution in S, where $1 < l < \frac{1}{2}n$, has at least $\frac{1}{2}n(n-1) > n$ conjugates in S. Since $\alpha: S \to SL(n,R)$ is injective and preserves conjugates, it follows that α preserves extremal involutions. Similarly, α preserves l-involutions.

REMARK. A slight modification of the above argument shows that a homomorphism $\alpha \colon U(f) \to GL(m,R)$ preserves extremal involutions for any $n \geq m \geq 3$ provided we assume card $\alpha I(f) > 2$; also, it is now not necessary to assume k and R are commutative (see James [9, Proposition 2.7]).

We next consider the case n even. Then $-1_V \in SU(f)$, but SU(f) contains no extremal involutions.

PROPOSITION 2. Let f be an anisotropic hermitian form which represents only one norm class. Assume $n = \dim V \ge 6$ is even. Let $\alpha \colon SU(f) \to SL(m,R)$ be a nontrivial representation where $n \ge m \ge 3$ and R is a commutative local ring with 2 a unit. Then n = m and α preserves 2-involutions.

PROOF. Any 2-involution in SU(f) is of the form $\pm \Psi(x)\Psi(y)$ where f(x,y)=0 and can be embedded into a maximal set S of 2^{n-1} mutually commuting involutions of SU(f). Since $\alpha SU(f) \neq 1_M$ no noncentral involution can be killed by α . Hence the kernel of $\alpha \colon S \to SL(m,R)$ is contained in $\{\pm 1_V\}$. If $\alpha(-1_V)=-1_M$ then $\alpha(S)$ is a set of 2^{n-1} mutually commuting involutions in SL(m,R) and hence n=m. If $\alpha(-1_V)=1_M$ and m is even then $\alpha(S)$ and -1_M generate a set of 2^{n-1} mutually commuting involutions in SL(m,R) and again n=m. If, however, m is odd we can only conclude $m \geq n-1$ since now $-1_M \notin SL(m,R)$. Assume, if possible, $n=m+1\geq 6$. Now any noncentral element of S has at least $\frac{1}{2}n(n-1)$ conjugates in S and hence its image in S and hence its image in S has at least S is not a maximal set of mutually commuting involutions in SL(m,R) and, consequently, $m\geq n$. In all situations we now have m=n.

If n=6, then all noncentral involutions in SL(6,R) are 2-involutions and hence α preserves 2-involutions. Assume, therefore, $n=m\geq 8$. Then any 2-involution in S has exactly $\frac{1}{2}n(n-1)$ conjugates in S while any other noncentral involution in S has at least $\binom{n}{4}>n(n-1)$ conjugates in S. Since the kernel of $\alpha\colon S\to SL(n,R)$ has at most 2 elements, it again follows by counting conjugates that α preserves 2-involutions.

REMARK. Proposition 2 is false if n=4 since there exist nontrivial representations of the type $\alpha \colon SO_4(f) \to SL(3,k)$ (see Artin [1, Theorem 5.23]). A slight modification of the above proof also shows that α preserves 4-involutions when $n \geq 8$.

The fact that $\alpha \colon SU(f) \to SL(n,R)$ preserves extremal involutions when n is odd sets up a correspondence between points in $\mathbf{P}V$ and points in $\mathbf{P}M$ and hence defines a map $\pi \colon \mathbf{P}V \to \mathbf{P}M$. However, when n is even the correspondence obtained from α is only between lines and we must get down to points by intersecting lines.

Assume $n \geq 8$ is even and let σ, τ be two commuting 2-involutions in SL(n,R). Then (σ,τ) is called a minimal pair if $\sigma\tau$ is also a 2-involution. The same definition applies for involutions in U(f). Denote by $L(\sigma)$ the rank two subspace of M (either the positive or negative space) associated with the 2-involution σ . Then $L(\sigma)$ can be viewed as a line in $\mathbf{P}M$. If (σ,τ) is a minimal pair then $P(\sigma,\tau)=L(\sigma)\cap L(\tau)$ is a rank one direct summand of M and hence a point in $\mathbf{P}M$. Note, if σ and τ are commuting 2-involutions, then $\sigma\tau$ is either $\pm 1_M$, a 2-involution or a 4-involution, according as the rank of $L(\sigma)\cap L(\tau)$ is 2, 1 or 0. When n=6, the 2-involutions and 4-involutions cannot be distinguished; hence the assumption $n\geq 8$. A homomorphism $\alpha\colon SU(f)\to SL(n,R)$ with nontrivial image will now map a minimal pair (σ,τ) in SU(f) to a minimal pair $(\alpha\sigma,\alpha\tau)$ in SL(n,R). We can then set up a map $\pi\colon \mathbf{P}V\to \mathbf{P}M$ by putting $\pi P(\sigma,\tau)=P(\alpha\sigma,\alpha\tau)$. That π is well defined is an immediate consequence of the following result.

PROPOSITION 3. Take the same assumptions as Proposition 2 except $n \geq 8$ and even. Let σ_1, σ_2 and σ_3 be three 2-involutions in SU(f) whose associated lines in PV have a unique common point, that is, $L(\sigma_1) \cap L(\sigma_2) \cap L(\sigma_3) = kx$. Then the lines $L(\alpha\sigma_1)$, $L(\alpha\sigma_2)$ and $L(\alpha\sigma_3)$ have a common point, which is unique if (σ_1, σ_2) is a minimal pair.

PROOF. The subspace $U=L(\sigma_1)+L(\sigma_2)+L(\sigma_3)$ of V has dimension at most four. Hence there exist nonzero y_1,y_2 in V, orthogonal to U, with $f(y_1,y_2)=0$. Then $\tau_1=\Psi(x)\Psi(y_1),\ \tau_2=\Psi(x)\Psi(y_2)$ and $\tau_3=\tau_1\tau_2$ are mutually commuting 2-involutions in SU(f). Any pair of τ_1,τ_2,τ_3 form a minimal pair, in fact, $P(\tau_1,\tau_2)=kx,\ P(\tau_1,\tau_3)=ky_1$ and $P(\tau_2,\tau_3)=ky_2$. This constructs three points $P(\alpha\tau_1,\alpha\tau_2),\ P(\alpha\tau_2,\alpha\tau_3)$ and $P(\alpha\tau_1,\alpha\tau_3)$ in PM; these three points must be distinct for otherwise $\alpha(\tau_1\tau_2\tau_3)=\alpha(1_V)$ is a 4-involution, which is absurd. By construction $(\sigma_i,\tau_j),\ 1\leq i\leq 3,\ 1\leq j\leq 2$, are minimal pairs; hence each $P(\alpha\sigma_i,\alpha\tau_j)$ is a point in PM. Therefore, the line $L(\alpha\sigma_i)$ either contains the point $P(\alpha\tau_1,\alpha\tau_2)=L(\alpha\tau_1)\cap L(\alpha\tau_2)$, or lies in the plane (rank three direct summand) $L(\alpha\tau_1)+L(\alpha\tau_2)$ and hence $L(\alpha\sigma_i)\cap L(\alpha\tau_3)\neq 0$. But $\sigma_i\tau_3$ is a 4-involution. Hence $\alpha(\sigma_i\tau_3)$ is also a 4-involution and $L(\alpha\sigma_i)\cap L(\alpha\tau_3)=0$. Thus necessarily the line $L(\alpha\sigma_i)$ goes through the point $P(\alpha\tau_1,\alpha\tau_2)$. This point need not be the unique point of intersection since the involutions $\alpha\sigma_i$ can all coincide. However, the additional assumption that (σ_1,σ_2) is a minimal pair ensures that the point is unique.

4. Thick collineations. Let f be an anisotropic hermitian form which represents only one norm class and $\alpha \colon SU(f) \to SL(n,R)$ a nontrivial homomorphism where R is a local ring with 2 a unit and dim $f = n \ge 3$. We now use the results from the previous selection to construct a thick collineation $\pi \colon \mathbf{P}V \to \mathbf{P}M$ from which, with the help of the Fundamental Theorem, the main results will be obtained.

Consider first the case n odd. Then for each nonzero x in V we have $\alpha(-\Psi(x)) = E(X,y)$ where E(X,y) is an extremal involution in SL(n,R) with negative space X and positive space Ry. Define the map $\pi \colon \mathbf{P}V \to \mathbf{P}M$ by $\pi(kx) = Ry$.

PROPOSITION 4. Let $\alpha \colon SU(f) \to SL(n,R)$ be a nontrivial homomorphism with $n \geq 3$ odd. Then the map $\pi \colon PV \to PM$ induced by α is a collineation.

PROOF. Let u_1, \ldots, u_n be any orthogonal basis of V and put $\alpha(-\Psi(u_i)) = E(U_i, v_i)$, $1 \leq i \leq n$. Since these involutions are mutually commutative it follows that $M = Rv_1 + \cdots + Rv_n$ and each $U_i = \sum_{j \neq i} Rv_j$ (see McDonald [13]). Hence the map π sends the projective frame ku_1, \ldots, ku_n of $\mathbf{P}V$ to the projective frame Rv_1, \ldots, Rv_n of $\mathbf{P}M$ and consequently satisfies the first condition for a collineation.

Next let P_1 and P_2 be two points in $\mathbf{P}V$ whose images πP_1 and πP_2 span a line in $\mathbf{P}M$. We must prove that any point P on the line $P_1 + P_2$ has image πP on the line $\pi P_1 + \pi P_2$. Assume first that $f(P_1, P_2) = 0$. Let $P_1 = ku_1$, $P_2 = ku_2$ and expand u_1, u_2 to an orthogonal basis u_1, u_2, \ldots, u_n of V. Put $\alpha(-\Psi(u_i)) = E(U_i, v_i) = E_i$, $1 \leq i \leq n$, as above. Let P = kx and $\alpha(-\Psi(x)) = E(X, y)$ so that $\pi P = Ry$. We must prove $y \in Rv_1 + Rv_2$. For each $i \geq 3$ the commutator $[\Psi(x), \Psi(u_i)] = 1_V$ and hence $E_i E(X, y) = E(X, y) E_i$. It follows that $E(X, y)(v_i)$ lies in the positive space Rv_i of E_i . If $E(X, y)(v_i) = v_i$ then $Ry = Rv_i$ and the positive space of the commuting involutions E_i and E(X, y) coincide, which forces the contradiction

 $\alpha(\Psi(x)\Psi(v_i))=1_M$. Hence, necessarily v_i lies in X, the negative space of E(X,y), for $3\leq i\leq n$. Let $y=\sum a_iv_i$ where $a_i\in R$. Then $E(X,y)E_i(y)=E_iE(X,y)(y)=E_i(y)$ and hence $E_i(y)\in Ry$, $3\leq i\leq n$. Thus $cy=E_i(y)=2a_iv_i-y$ for either c=1 or c=-1. The first possibility again forces the contradiction $Ry=Rv_i$. Hence c=-1 and $a_i=0$, $3\leq i\leq n$. Thus $y\in Rv_1+Rv_2$ and πP lies on $\pi P_1+\pi P_2$ as required.

Finally assume $f(P_1, P_2) \neq 0$. Then $P_1 + P_2 = ku_1' \perp ku_2'$ and the points $P_1' = ku_1'$ and $P_2' = ku_2'$ can be expanded to an orthogonal projective frame for $\mathbf{P}V$. As above $\pi P_1' + \pi P_2'$ is a line in $\mathbf{P}M$ and πP_1 and πP_2 must lie on this line. Hence $\pi P_1 + \pi P_2 = \pi P_1' + \pi P_2'$ since both are rank two direct summands of M. Consequently, the collinearity property also holds when $f(P_1, P_2) \neq 0$.

We next consider the case $n \geq 8$ even. Then, as explained in the previous section, a nontrivial homomorphism $\alpha \colon SU(f) \to SL(n,R)$ induces a map $\pi \colon \mathbf{P}V \to \mathbf{P}M$ via its action on minimal pairs of 2-involutions in SU(f).

PROPOSITION 5. Let $\alpha \colon SU(f) \to SL(n,R)$ be a nontrivial homomorphism with $n \geq 8$ even. Then the map $\pi \colon \mathbf{P}V \to \mathbf{P}M$ induced by α is a collineation.

PROOF. Let u_1, \ldots, u_n be an orthogonal basis of V and put $\sigma_i = \Psi(u_i)\Psi(u_{i+1})$, $1 \leq i \leq n$, where we view the subscipts i modulo n. Then each (σ_{i-1}, σ_i) is a minimal pair in SU(f) with associated point $P(\sigma_{i-1}, \sigma_i) = ku_i$. Let $L(\sigma_i)$ denote the 2-dimensional space of σ_i (now the negative space). Each $L(\sigma_i) = ku_i \perp ku_{i+1}$ can be viewed as a line in $\mathbf{P}V$. The image of the point ku_i under the map π is the point $P(\alpha\sigma_{i-1}, \alpha\sigma_i) = Rv_i$, say, of $\mathbf{P}M$. Then, from the definition of π , we have $Rv_i = L(\alpha\sigma_{i-1}) \cap L(\alpha\sigma_i)$. Hence $Rv_i + Rv_{i+1} \subseteq L(\alpha\sigma_i)$. Whenever $|i-j| \geq 2$ the product $\sigma_i\sigma_j$ is a 4-involution and since α preserves 4-involutions, it follows that $L(\alpha\sigma_i) \cap L(\alpha\sigma_j) = 0$. Hence $Rv_i \cap Rv_{i+1} = 0$ and, consequently, $L(\alpha\sigma_i) = Rv_i + Rv_{i+1}$. Since each $L(\alpha\sigma_i)$ is a direct summand of M, we now have $M = Rv_1 + \cdots + Rv_n$ and π carries the projective frame ku_1, \ldots, ku_n of $\mathbf{P}V$ to the projective frame Rv_1, \ldots, Rv_n of $\mathbf{P}M$.

If P_1 and P_2 are two orthogonal points in $\mathbf{P}V$ whose images πP_1 and πP_2 generate a line $\pi P_1 + \pi P_2$ then we may take $P_1 = ku_1$ and $P_2 = ku_2$ as above. Let P be any point on the line $P_1 + P_2$ and choose a minimal pair (σ_1, τ) of 2-involutions, with σ_1 as before, and $P = P(\sigma_1, \tau)$. Then πP lies on $L(\alpha \sigma_1) = \pi P_1 + \pi P_2$ as required. The case $f(P_1, P_2) \neq 0$ can be handled as in Proposition 4.

PROPOSITION 6. The collineations of Propositions 4 and 5 are thick.

PROOF. Let $P_1 = ku_1$ and $P_2 = ku_2$ be points in $\mathbf{P}V$ with images $\pi P_1 = Rv_1$ and $\pi P_2 = Rv_2$ spanning a line in $\mathbf{P}M$. We may assume $f(u_1, u_1) = f(u_2, u_2)$. Consider first $f(u_1, u_2) = 0$ and expand u_1, u_2 to an orthogonal basis u_1, \ldots, u_n of V. By symmetry $R(v_1 + pv_2)$ is the image of $k(u_1 + u_2)$. If p is a unit then π is thick. Assume, therefore, $p \in \mathfrak{m}$. Let $k(u_1 - u_2)$ have image $R(a_1v_1 + a_2v_2)$. Since $u_1 + u_2, u_1 - u_2, u_3, \ldots, u_n$ is an orthogonal basis of V it follows, as before, that $R(v_1 + pv_2)$ and $R(a_1v_1 + a_2v_2)$ must span $Rv_1 + Rv_2$. Hence a_2 is a unit which can be made 1. Again we are finished unless $a_1 = q \in \mathfrak{m}$. If n is odd, apply α to the identity $\Psi(u_2)\Psi(u_1 + u_2) = \Psi(u_1 - u_2)\Psi(u_2)$. Then, as in Proposition 4,

 $E(U_2, v_2)E(X, v_1 + pv_2) = E(Y, qv_1 + v_2)E(U_2, v_2)$ where $U_2 = \sum_{i \neq 2} Rv_i$. Hence

$$E(Y, qv_1 + v_2)(-v_1 + pv_2) = E(Y, qv_1 + v_2)E(U_2, v_2)(v_1 + pv_2)$$

$$= E(U_2, v_2)E(X, v_1 + pv_2)(v_1 + pv_2)$$

$$= E(U_2, v_2)(v_1 + pv_2) = -v_1 + pv_2$$

and, therefore, $-v_1 + pv_2 \in R(qv_1 + v_2)$. This is impossible since $q \in \mathfrak{m}$. When n is even a similar calculation can be made starting with the 2-involution identity $\sigma_2\Psi(u_3)\Psi(u_1+u_2)=\Psi(u_1-u_2)\Psi(u_3)\sigma_2$, where $\sigma_2=\Psi(u_2)\Psi(u_3)$. The remaining case with $f(u_1,u_2)\neq 0$ is handled as in Proposition 4.

5. Representations over local rings. Let G be a subgroup of U(f) containing SU(f) and $\alpha\colon G\to GL(M)$ a representation, with $\alpha SU(f)$ nontrivial, where M is a free module over a commutative local ring R with 2 a unit and $n=\dim f=\mathrm{rank}\, M\geq 3$. Since SU(f) is perfect, $\alpha SU(f)\subseteq SL(n,R)$. Then except for n=4 or 6 the homomorphism α induces a thick collineation $\pi\colon \mathbf{P}V\to \mathbf{P}M$. The cases n=4 and 6 can be included if the hypotheses are modified to $I(f)\subseteq G$ and $\mathrm{card}\, \alpha I(f)>2$. By the Fundamental Theorem there now exists a generalized place $\varphi\colon k\to R\cup\infty$ with valuation ring $A=\varphi^{-1}(R)$ and homomorphism $\varphi\colon A\to R$, a free A-module N in V of rank n and a φ -semilinear map $g\colon N\to M$ inducing π . Thus $\pi P=R\beta(P\cap N)$ for any point P in PV. We study these objects further and use them to describe the original representation α via a twisted congruence subgroup in G.

We first establish that $A^* = A$ and $\mathfrak{m}(A)^* = \mathfrak{m}(A)$. The A-module N in V is called maximal if $N = \{x \in V | f(x,x) \in \mathfrak{c}\}$ for some fractional ideal \mathfrak{c} of A. Denote by U(N) the subgroup of U(f) consisting of all $\sigma \in U(f)$ such that $\sigma(N) = N$. If N is maximal then U(N) = U(f).

PROPOSITION 7. (i) $A^* = A$ and $\mathfrak{m}(A)^* = \mathfrak{m}(A)$.

- (ii) The A-module N is maximal and has an orthogonal basis.
- (iii) U(N) = U(f).

PROOF. Let $x, y \in N$ be primitive (that is, x, y are not in $\mathfrak{m}(A)N$) with $\pi(kx) \neq \pi(ky)$. Assume, if possible, $c = 2f(x,x)^{-1}f(x,y)$ is not in A, or equivalently, that $f(x,y)^{-1}f(x,x) \in \mathfrak{m}(A)$. Let $\beta(x) = v$ and $\beta(y) = w$ so that $Rv \neq Rw$. Then

$$\Psi(x)\Psi(y) = \Psi(\Psi(x)(y))\Psi(x) = \Psi(y - cx)\Psi(x)$$

is an identity in SU(f). If n is odd, applying the homomorphism α gives an identity $E(X,v)E(Y,w)=E(Z,\varphi(c^{-1})w-v)E(X,v)$ in SL(M). Hence $E(X,v)(w)\in R(\varphi(c^{-1})w-v)$. But E(X,v)(w)=-w+2av for some $a\in R$ which forces the contradiction Rv=Rw. If $n\geq 8$ is even, choose z primitive in N and orthogonal to x and y. Then a similar contradiction can be achieved using the 2-involutions $\Psi(x)\Psi(z)$, $\Psi(y)\Psi(z)$ and $\Psi(y-cx)\Psi(z)$. Hence, in both cases, $f(x,y)\in f(x,x)A$.

Since A is a valuation ring the module N has an orthogonal decomposition into indecomposable components of rank one or two. If N has an indecomposable binary component B = Ax + Ay, then necessarily $f(x,x) \in f(x,y)\mathfrak{m}(A)$. This gives a contradiction with the previous paragraph since $\beta(x)$, $\beta(y)$ expands to a basis of M. Thus N has an orthogonal basis and we may assume $N = Au_1 \perp \cdots \perp Au_n$ and $M = Rv_1 + \cdots + Rv_n$ where $\beta(u_i) = v_i$, $1 \leq i \leq n$. Let $f(u_i, u_i) = a_i$,

 $1 \le i \le n$, where each a_i is a nonzero element of k. Since A is a valuation ring there exists a_1 , say, such that $a_1^{-1}a_i \in A$, $1 \le i \le n$.

Let $e \in A$ be a unit. If $e^* \notin A$ replace e by e^{-1} . Hence $e^* \in A$. Assume e^* is not a unit, so $e^* \in \mathfrak{m}(A)$. Put $x = e^*u_1 + eu_2$ and $y = u_1$. Then $\pi(kx) \neq \pi(ky)$ and consequently $f(x,y) \in f(x,x)A$. Therefore, $ea_1 \in (ea_1e^* + e^*a_2e)A$ which gives the contradiction $1 \in \mathfrak{m}(A)$. Thus e^* must be a unit. Hence $(1 + \mathfrak{m}(A))^* \subseteq A$, so that $\mathfrak{m}(A)^* \subseteq A$. It follows that $A^* = A$ and $\mathfrak{m}(A)^* = \mathfrak{m}(A)$.

Next let $p \in \mathfrak{m}(A)$ and put $x = p^*u_1 + u_i$, $i \neq 1$, and $y = u_1$. Then $\pi(kx) \neq \pi(ky)$ so that $f(x,y) \in f(x,x)A$. Therefore, pa_1 lies in the fractional ideal $(pa_1p^* + a_i)A$ and, since A is a valuation ring, $pa_1 \in a_iA$. Thus $a_1\mathfrak{m}(A) \subseteq a_iA$. If $\mathfrak{m}(A)$ is not a principal ideal then $a_1^{-1}a_i$ must be a unit, since $a_1^{-1}a_i \in A$. In this case N is now a modular lattice. If, on the other hand, $\mathfrak{m}(A)$ is a principal ideal then either $a_1^{-1}a_i$ is a unit, or $a_iA = a_1\mathfrak{m}(A)$. The second possibility cannot occur since f represents only one norm class. Thus again N is modular.

Finally, let $x=\sum c_iu_i\in N$ with at least one coefficient, say c_1 , a unit in A. Assume $f(x,x)\in a_1\mathfrak{m}(A)$, so that necessarily a second coefficient, say c_2 , is also a unit. Put $y=u_2$. Then $\pi(kx)\neq \pi(ky)$ and $f(x,y)\in f(x,x)A$. This forces the contradiction $1\in \mathfrak{m}(A)$. Hence $f(x,x)A=a_1A$ and N is now necessarily a maximal lattice.

DEFINITION. Let $\chi\colon G\to \mathfrak{u}(R)$ be a character, that is, a homomorphism from G into the group of units $\mathfrak{u}(R)$ of R, and \mathfrak{a} the kernel of $\varphi\colon A\to R$. Then $G(\mathfrak{a},\chi)$ denotes the twisted congruence subgroup of the group G consisting of all $\sigma\in G$ such that

- (i) $\chi(\sigma) \in \varphi(A)$, so $\chi(\sigma) = \varphi(a_{\sigma})$ for some $a_{\sigma} \in A$,
- (ii) $a_{\sigma}\sigma(x) \equiv x \mod \mathfrak{a}N$ for all $x \in N$.

Note that the definition is independent of the choice of a_{σ} since \mathfrak{a} is the kernel of φ and condition (ii) is modulo $\mathfrak{a}N$.

PROOF OF THEOREM 1. Many parts of the theorem have already been established. It remains to construct a character $\chi \colon G \to \mathfrak{u}(R)$, show that $U(\mathfrak{a}, \chi)$ is the kernel of α , and describe the action of $\alpha\sigma$ for $\sigma \in G$.

Consider first $n \geq 3$ odd. Let $x \in N$ be primitive and $N = Ax \perp X$. Then the image of $-\Psi(x) \in SU(f)$ under α is $E(Y,\beta(x))$ where $Y = \beta(X)$. For if $w \in X$ is primitive, then $\Psi(x)$ and $\Psi(w)$ commute and hence $E(Y,\beta(x))$ and $E(Z,\beta(w))$ commute. Since $R\beta(x) \cap R\beta(w) = 0$, for otherwise $\alpha(\Psi(x)\Psi(w)) = 1_M$, it follows that $\beta(w) \in Y$. Hence $\beta(X) \subseteq Y$ and, since they have the same rank, $\beta(X) = Y$. For any $\sigma \in G$ and primitive $x \in N$ we have $\sigma(-\Psi(x))\sigma^{-1} = -\Psi(\sigma(x))$ in G. Applying the homomorphism α gives $(\alpha\sigma)E(\beta(X),\beta(x))(\alpha\sigma)^{-1} = E(\beta\sigma(X),\beta\sigma(x))$. Hence, from comparing the positive spaces,

$$(\alpha\sigma)(\beta(x)) = \chi(\sigma, x)\beta\sigma(x)$$

for some unit $\chi(\sigma, x)$ in R. We show $\chi(\sigma) = \chi(\sigma, x)$ is independent of the choice of x. Let $y \in N$ be primitive with f(x, y) = 0. Then $x + y \in N$ is also primitive. Moreover, if $\alpha(-\Psi(x)) = E(Y, \beta(x))$, then $\beta(y) \in Y$ and hence $R\beta(x) \cap R\beta(y) = 0$. Then, from $\chi(\sigma, x + y)\beta\sigma(x + y) = (\alpha\sigma)\beta(x + y) = \chi(\sigma, x)\beta\sigma(x) + \chi(\sigma, y)\beta\sigma(y)$ it follows that $\chi(\sigma, x + y) = \chi(\sigma, x) = \chi(\sigma, y)$. Thus $\chi(\sigma, x)$ is independent of x and we have constructed a map $\chi: G \to \mathfrak{u}(R)$. It is easily seen that χ is a group

homomorphism. Also, we have established that

$$(\alpha\sigma)(\beta(x)) = \chi(\sigma)\beta\sigma(x).$$

Now let $n \geq 8$ be even. Let $\tau_1 = \Psi(x)\Psi(y)$ and $\tau_2 = \Psi(x)\Psi(z)$ where x,y,z are primitive orthogonal elements of N. Then (τ_1,τ_2) is a minimal pair of 2-involutions with associated point $P(\tau_1,\tau_2) = L(\tau_1) \cap L(\tau_2) = kx$. From the construction of π in Proposition 5 and the definition of β we have $L(\alpha\tau_1) = \beta L(\tau_1)$, $L(\alpha\tau_2) = \beta L(\tau_2)$ and $P(\alpha\tau_1,\alpha\tau_2) = \beta P(\tau_1,\tau_2)$. For any $\sigma \in G$, $(\sigma\tau_1\sigma^{-1},\sigma\tau_2\sigma^{-1})$ remains a minimal pair as also does its image under α . Since $L(\sigma\tau_1\sigma^{-1}) = \sigma L(\tau_1)$, $L(\sigma\tau_2\sigma^{-1}) = \sigma L(\tau_2)$ and $P(\sigma\tau_1\sigma^{-1},\sigma\tau_2\sigma^{-1}) = \sigma P(\tau_1,\tau_2)$ it follows that $(\alpha\sigma)\beta(x) = \chi(\sigma,x)\beta\sigma(x)$ for some unit $\chi(\sigma,x)$ in R. Again it follows that $\chi(\sigma,x)$ is independent of x and that χ induces a group homomorphism from G to the units of R.

If $\mathfrak a$ is the kernel of the homomorphism $\varphi\colon A\to R$ then clearly $\mathfrak a N$ is the kernel of the φ -semilinear map $\beta\colon N\to M$. Finally we must show that the twisted congruence subgroup $G(\mathfrak a,\chi)$ is the kernel of α . Let $\sigma\in\ker\alpha$. Then $\alpha(\sigma)=1_M$ and consequently $\beta(x)=\chi(\sigma)\beta\sigma(x)$ for any $x\in N$. Hence $\chi(\sigma)\in\varphi(A)$. Therefore, $\beta(x-a_\sigma\sigma(x))=0$ where $\varphi(a_\sigma)=\chi(\sigma)$. Thus $\sigma\in G(\mathfrak a,\chi)$. The converse is similar. This completes the proof of Theorem 1.

REMARK. It is quite possible for $\mathfrak{a}=0$ and φ and β to be injections. The kernel of α is then contained in the center of U(f).

PROPOSITION 8. Let $\varphi \colon k \to R \cup \infty$ be the generalized place in Theorem 1 and $A = \varphi^{-1}(R)$ the associated valuation ring. Let K be the fixed field of k under the involution *. Then

- (i) $\mathbf{Q} \subseteq A$,
- (ii) if $\mathbf{R} \subseteq K$ then $\mathbf{R} \subseteq A$,
- (iii) $B/\mathfrak{m}(B)$ is formally real, where $B = K \cap A$ is the induced valuation ring of K.

PROOF. Since $\varphi(1) = 1$ we know $\mathbf{Z} \subseteq A$. Assume $\varphi(p) \in \mathfrak{m}(R)$ for some odd prime p in \mathbf{Z} . Then $p \in \mathfrak{m}(A)$. Let $N = Au_1 \perp \cdots \perp Au_n$ be the maximal lattice in Theorem 1 where we may assume $f(u_i, u_i) = a \neq 0, 1 \leq i \leq n$. Since the quadratic form $\langle 1, 1, \ldots, 1 \rangle$ is isotropic over the finite field \mathbf{F}_p there exist integers c_1, \ldots, c_n with $c_1 = 1$ such that $\sum c_i^2 \in p\mathbf{Z}$. Then $x = \sum c_i u_i \in N$ is primitive and $f(x, x) \in a\mathfrak{m}(A)$, since the involution is trivial on \mathbf{Z} . This contradicts the fact that N is a maximal lattice (Proposition 7). Hence $\varphi(p)$ is a unit in R for all odd primes p. By hypothesis 2 is a unit in R and hence also in A. It follows that $\mathbf{Q} \subseteq A$ and the valuation induced by φ on \mathbf{Q} is trivial.

Now assume $\mathbf{R} \subseteq K$. Let $a \in \mathbf{R}$ with 0 < a < 1. Assume $\varphi(a) = \infty$ so that $a^{-1} \in \mathfrak{m}(A)$. Let $a^{-1} - 1 = b^2$ where $b \in \mathbf{R}$. Then $x = bu_1 + u_2$ is primitive in N but $f(x,x) \in a\mathfrak{m}(A)$, contradicting the fact that N is maximal. Therefore, $\mathbf{R} \subseteq A$ by the Archimedean axiom on \mathbf{R} , and the induced valuation on \mathbf{R} is now trivial. The proof of (iii) is similar.

REMARK. Proposition 8(ii) is more general. The same result holds for any subfield of \mathbf{R} all of whose positive elements are squares. If k is such a field then Theorem 1 suggests that the only nontrivial normal subgroup of the orthogonal group SO(f), $n \neq 4$, is its center. This is true, see Bröcker [4]. A similar result should hold for unitary groups SU(f) over k(i), $i^2 = -1$.

6. Representations over commutative rings. We now extend the results of the previous section to representations $\alpha \colon G \to GL(n,R)$, where R is a commutative ring with 2 not a zero divisor. If 2 is not a unit in R, enlarge R by localizing with respect to the multiplicative set generated by 2. Assume, therefore, 2 is a unit in R. Let \mathfrak{p} be a prime ideal of R, $R_{\mathfrak{p}}$ the localization at \mathfrak{p} and $\varepsilon_{\mathfrak{p}} \colon R \to R_{\mathfrak{p}}$ the canonical homomorphism. Localize M at \mathfrak{p} and let $M \to M_{\mathfrak{p}}$ be the natural extension of $\varepsilon_{\mathfrak{p}}$. Then we have a homomorphism $\eta_{\mathfrak{p}} \colon GL(M) \to GL(M_{\mathfrak{p}})$ from the group GL(M) = GL(n,R) to the group $GL(M_{\mathfrak{p}}) = GL(n,R_{\mathfrak{p}})$.

PROOF OF THEOREM 2. Let $\alpha \colon SU(f) \to GL(M)$ be a nontrivial representation of SU(f). Then Theorem 1 can be applied to the composite map $\eta_{\mathfrak{p}} \circ \alpha \colon SU(f) \to GL(n, R_{\mathfrak{p}})$. If the image of SU(f) is now trivial then obviously the kernel is SU(f). Otherwise the kernel is a twisted congruence subgroup $SU(\mathfrak{a}_{\mathfrak{p}}, \chi_{\mathfrak{p}})$ of SU(f). Let H be the intersection of all these twisted congruence subgroups for which $\eta_{\mathfrak{p}} \circ \alpha$ is nontrivial as \mathfrak{p} varies over the maximal ideals of R. Clearly H is a normal subgroup of SU(f) containing the kernel of α . Conversely, let $\sigma \in H$. Then $\eta_{\mathfrak{p}}(\alpha\sigma) = 1$ for all maximal ideals \mathfrak{p} . Hence $(\alpha\sigma(x) - x)_{\mathfrak{p}} = 0$ in $M_{\mathfrak{p}}$ for all maximal ideals \mathfrak{p} and all $x \in M$. It follows (for example, Bass [2, p. 108]) that $(\alpha\sigma)(x) = x$ in M for all $x \in M$. Thus $\sigma \in \ker \alpha$ and

$$1 \to H \to SU(f) \xrightarrow{\alpha} GL(n,R)$$

is an exact sequence. Finally, since SU(f) is perfect, the characters $\chi_{\mathfrak{p}} \colon SU(f) \to \mathfrak{u}(R_{\mathfrak{p}})$ are all trivial.

To prove Theorem 3 we need to study the generalized places $\varphi \colon \mathbf{C}(X) \to R \cup \infty$, with R a local ring, extending an injection $\varphi \colon \mathbf{C} \to R$. Recall the notation A_c and $\varphi_{c,m}$ from the introduction.

PROPOSITION 9. Let $\varphi \colon \mathbf{C}(X) \to R \cup \infty$ be a generalized place, which induces the trivial valuation on \mathbf{C} , and $A = \varphi^{-1}(R)$ the associated valuation ring. Then one of the following occurs:

- (i) $A = \mathbf{C}(X)$ and φ is an injection into R,
- (ii) $A = A_c$ and $\varphi = \varphi_{c,m}$ for some $c \in \mathbb{C}$ and integer $m \ge 1$,
- (iii) $A = A_{\infty}$ and $\varphi = \varphi_{\infty,m}$ for some integer $m \ge 1$.

PROOF. We have $\varphi(\mathbf{C}) = \mathbf{C} \subseteq R$. Let \mathfrak{a} be the kernel of $\varphi \colon A \to R$. Assume first $\varphi(X) = x \in R$. Then $\mathbf{C}[x] \subseteq R$. If g(x) is a unit in R for all nonzero polynomials $g(X) \in \mathbf{C}[X]$ then $A = \mathbf{C}(X)$, $\mathfrak{a} = 0$ and φ is an injection. Assume, therefore, there exists a monic nonconstant polynomial $g(X) \in \mathbf{C}[X]$ with $g(x) \in \mathfrak{m}(R)$. Let g(X) have minimal degree and $c \in \mathbf{C}$ be a root of g(X). Then g(X) = X - c. If $h(X) \in \mathbf{C}[X]$ is a polynomial relatively prime to g(X), then h(x) must be a unit of R, for otherwise $1 \in \mathfrak{m}(R)$. Hence $A = A_c$ and $\mathfrak{m}(A) = (X - c)A_c$. Since the valuation ring A_c is discrete, the kernel $\mathfrak{a} = (X - c)^m A_c$ for some integer $m \geq 1$. Then $\varphi = \varphi_{c,m}$. Finally assume $\varphi(X) = \infty$. Then $X^{-1} \in \mathfrak{m}(A)$ and $\varphi(X^{-1}) = x \in \mathfrak{m}(R)$. Hence $\varphi(X^{-1} - c)$ is a unit of R for all nonzero $c \in \mathbf{C}$. Therefore, (X - a)/(X - b) is a unit in A for all $a, b \in \mathbf{C}$. Consequently $A = A_\infty$ consists of all rational functions with degree ≤ 0 . Hence $\mathfrak{m}(A) = X^{-1}A_\infty$ and the kernel $\mathfrak{a} = X^{-m}A_\infty$ for some $m \geq 1$. Thus $\varphi = \varphi_{\infty,m}$.

PROOF OF THEOREM 3. We apply Theorems 1 and 2 to the special case $k = \mathbf{C}(X)$. Let $\varphi \colon \mathbf{C}(X) \to R \cup \infty$ be a generalized place occurring in Theorem

1(i). By Proposition 8, $\varphi(\mathbf{R}) = \mathbf{R} \subseteq R$ (after identifying \mathbf{R} with a subfield of R). Also $\varphi(i)^2 = \varphi(-1) = -1$ and hence $\varphi(\mathbf{C}) = \mathbf{C} \subseteq R$. Therefore φ is one of the generalized places in Proposition 9. However, if $\varphi = \varphi_{c,m}$ with $c \in \mathbf{C}$, then $c \in \mathbf{R}$ since by Theorem 1(i) we must have $A_c^* = A_c$. Let H be a nontrivial normal subgroup of SU(f) as in Theorem 3. By Theorem 2, $H = \bigcap SU(\mathfrak{a}_j, 1)$ where the \mathfrak{a}_j are kernels of generalized places $\varphi_j \colon \mathbf{C}(x) \to R_j \cup \infty$. We may assume $\mathfrak{a}_j \neq 0$ and hence any injective φ_j can be ignored. Only a finite number of \mathfrak{a}_j can be nonzero, for otherwise H = 1 is trivial. Let A be the intersection of the finite number of valuation rings A_c , $c \in \mathbf{R} \cup \infty$, associated with generalized places with nontrivial kernel, and \mathfrak{a} the intersection of these kernels. Then \mathfrak{a} is an ideal of A. By the weak approximation theorem for valuations we can choose a common basis u_1, \ldots, u_n for all the associated maximal lattices in Theorem 1(ii). Then $N = Au_1 + \cdots + Au_n$ is the intersection of these maximal lattices and hence $\sigma(N) = N$ for all $\sigma \in SU(f)$. Let $SU(\mathfrak{a})$ be the congruence subgroup of all $\sigma \in SU(f)$ with $(\sigma - 1)N \subseteq \mathfrak{a}N$. Then $H = \bigcap SU(\mathfrak{a}_j, 1) = SU(\mathfrak{a})$, completing the proof.

REFERENCES

- 1. E. Artin, Geometric algebra, Interscience, New York, 1957.
- 2. H. Bass, Algebraic K-theory, Benjamin, New York, 1968.
- 3. A. Borel and J. Tits, Homomorphismes "abstraits" de groupes algébriques simples, Ann. of Math. 97 (1973), 499-571.
- L. Bröcker, Zur orthogonalen Geometrie über pythagoreischen Körpern, J. Reine Angew. Math. 268/269 (1974), 68-77.
- 5. C.-N. Chang, Integral orthogonal groups over $\mathbf{R}((\pi_1))((\pi_2)) ((\pi_n))$, J. Algebra **39** (1976), 308–327.
- J. Dieudonné, On the automorphisms of the classical groups, Mem. Amer. Math. Soc. No. 2, 1951, 95 pp.
- 7. ____, La géometrié des groupes classiques, Springer, Berlin-Heidelberg-New York, 1971.
- 8. A. J. Hahn, D. G. James and B. Weisfeiler, *Homomorphisms of algebraic and classical groups:* a survey, Canad. Math. Soc. Conf. Proc., vol. 4, Amer. Math. Soc., Providence, R.I., 1984, pp. 249–296.
- D. G. James, Projective geometry for orthogonal groups, J. Reine Angew. Math. 319 (1980), 104-117.
- 10. ____, Homomorphisms of unitary groups, Math. Z. 178 (1981), 343-352.
- 11. D. James, W. Waterhouse and B. Weisfeiler, Abstract homomorphisms of algebraic groups: problems and bibliography, Comm. Algebra 9 (1981), 95-114.
- 12. T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Mass., 1973.
- 13. B. R. McDonald, Geometric algebra over local rings, Dekker, New York, 1976.
- 14. B. Pollak, Orthogonal groups over $\mathbf{R}((\pi))$, Amer. J. Math. 100 (1968), 214–230.
- J. Tits, Homomorphismes "abstrait" de groupes de Lie, Sympos. Math., vol. 13 (Inst. Naz. Alta Mat., Rome, 1972), Academic Press, London, 1974, pp. 479-499.
- B. Weisfeiler, On abstract homomorphisms of anisotropic algebraic groups over real-closed fields,
 J. Algebra 60 (1979), 485-519.
- Abstract isomorphisms of simple algebraic groups split by quadratic extensions, J. Algebra 68 (1981), 335-368.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802